usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Stateless Network Functions: Breaking the Tight
Coupling of State and Processing

Murad Kablan, Azzam Alsudais, and Eric Keller, University of Colorado Boulder;
Franck Le, IBM Research

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan

This paper is included in the Proceedings of the
14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI "17).
March 27-29, 2017 - Boston, MA, USA
ISBN 978-1-931971-37-9

Open access to the Proceedings of the
14th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by USENIX.

Stateless Network Functions:
Breaking the Tight Coupling of State and Processing

Murad Kablan, Azzam Alsudais, Eric Keller
University of Colorado, Boulder

Abstract

In this paper we present Stateless Network Functions,
a new architecture for network functions virtualization,
where we decouple the existing design of network func-
tions into a stateless processing component along with
a data store layer. In breaking the tight coupling, we
enable a more elastic and resilient network function in-
frastructure. Our StatelessNF processing instances are
architected around efficient pipelines utilizing DPDK
for high performance network I/O, packaged as Docker
containers for easy deployment, and a data store in-
terface optimized based on the expected request pat-
terns to efficiently access a RAMCloud-based data store.
A network-wide orchestrator monitors the instances for
load and failure, manages instances to scale and provide
resilience, and leverages an OpenFlow-based network to
direct traffic to instances. We implemented three exam-
ple network functions (network address translator, fire-
wall, and load balancer). Our evaluation shows (i) we are
able to reach a throughput of 10Gbit/sec, with an added
latency overhead of between 100us and 500us, (i) we
are able to have a failover which does not disrupt ongo-
ing traffic, and (iii) when scaling out and scaling in we
are able to match the ideal performance.

1 Introduction

As evidenced by their proliferation, middleboxes are
an important component in today’s network infrastruc-
tures [50]. Middleboxes provide network operators with
an ability to deploy new network functionality as add-on
components that can directly inspect, modify, and block
or re-direct network traffic. This, in turn, can help in-
crease the security and performance of the network.
While traditionally deployed as physical appliances,
with Network Functions Virtualization (NFV), network

Franck Le
IBM Research

functions such as firewalls, intrusion detection systems,
network address translators, and load balancers no longer
have to run on proprietary hardware, but can run in soft-
ware, on commodity servers, in a virtualized environ-
ment, with high throughput [25]. This shift away from
physical appliances should bring several benefits includ-
ing the ability to elastically scale the network functions
on demand and quickly recover from failures.

However, as others have reported, achieving those
properties is not that simple [44, 45, 23, 49]. The cen-
tral issue revolves around the state locked into the net-
work functions — state such as connection information in
a stateful firewall, substring matches in an intrusion de-
tection system, address mappings in a network address
translator, or server mappings in a stateful load balancer.
Locking that state into a single instance limits the elastic-
ity, resilience, and ability to handle other challenges such
as asymmetric/multi-path routing and software updates.

To overcome this, there have been two lines of re-
search, each focusing on one property!. For failure, re-
cent works have proposed either (i) checkpointing the
network function state regularly such that upon failure,
the network function could be reconstructed [44], or (ii)
logging all inputs (i.e., packets) and using determinis-
tic replay in order to rebuild the state upon failure [49].
These solutions offer resilience at the cost of either a
substantial increase in per-packet latency (on the order
of 10ms), or a large recovery time at failover (e.g., re-
playing all packets received since the last checkpoint),
and neither solves the problem of elasticity. For elastic-
ity, recent works have proposed modifying the network
function software to enable the migration of state from
one instance to another via an API [29, 45, 23]. State mi-
gration, however, takes time, inherently does not solve

A third line, sacrifices the benefits of maintaining state in order to
obtain elasticity and resilience [20].

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 97

the problem of unplanned failures, and as a central prop-
erty relies on affinity of flow to instance — each rendering
state migration a useful primitive, but limited in practice.

In this paper, we propose stateless network functions
(or StatelessNF), a new architecture that breaks the tight
coupling between the state that network functions need
to maintain from the processing that network functions
need to perform (illustrated in Figure 1). Doing so sim-
plifies state management, and in turn addresses many of
the challenges existing solutions face.

Resilience: With StatelessNF, we can instantaneously
spawn a new instance upon failure, as the new instance
will have access to all of the state needed. It can imme-
diately handle traffic and it does not disrupt the network.
Even more, because there is no penalty with failing over,
we can failover much faster — in effect, we do not need to
be certain a network function has failed, but instead only
speculate that it has failed and later detect that we were
wrong, or correct the problem (e.g., reboot).

Elasticity: When scaling out, with StatelessNF, a new
network function instance can be launched and traffic im-
mediately directed to it. The network function instance
will have access to the state needed through the data store
(e.g., a packet that is part of an already established con-
nection that is directed to a new instance in a traditional,
virtualized, firewall will be dropped because a lookup
will fail, but with StatelessNF, the lookup will provide
information about the established connection). Likewise,
scaling in simply requires re-directing any traffic away
from the instance to be shut down.

Asymmetric / Multi-path routing: In StatelessNF each
instance will share all state, so correct operation is not
reliant on affinity of traffic to instance. In fact, in our
model, we assume any individual packet can be handled
by any instance, resulting in an abstraction of a scalable,
resilient, network function. As such, packets traversing
different paths does not cause a problem.

While the decoupling of state from processing ex-
ists in other settings (e.g., a web server with a backend
database), the setting of processing network traffic, po-
tentially requiring per packet updates to state, poses a
significant challenge. A few key insights and advances
have allowed us to bring this new design to a reality.
First, there have been recent advances in disaggregated
architectures, bringing with it new, low-latency and re-
silient data stores such as RAMCloud [39]. Second, not
all state that is used in network functions needs to be
stored in a resilient data store — only dynamic, network
state needs to persist across failures and be available to
all instances. State such as firewall rules, and intrusion
detection system signatures can be replicated to each in-

Data = == = - ————

Storei | :
—)

Network
functions

2

State

Processing
)

_J

(a) Traditional

Processing
D)

_J

(b) Stateless

Figure 1: High level overview showing traditional net-
work functions (a), where the state is coupled with the
processing to form the network function, and stateless
network functions (b), where the state is moved from the
network function to a data store — the resulting network
functions are now stateless.

stance upon boot, as they are static state. Finally, net-
work functions share a common pipeline design where
there is typically a lookup operation when the packet is
first being processed, and sometimes a write operation
after the packet has been processed. This not only means
there will be less interaction than one might initially as-
sume, but also allows us to leverage this pattern to opti-
mize the interactions between the data store and the net-
work function instances to provide high performance.
We describe how four common network functions, can
be re-designed in a stateless manner. We present the im-
plementation of a stateful firewall, an intrusion preven-
tion system, a network address translator, and a load bal-
ancer. Section 3 discusses the remote memory access.
Section 6 discusses our utilization of RAMCloud for the
data store, DPDK for the packet processing, and the opti-
mized interface between the network functions and data
store. Section 7 presents the evaluation: our experi-
ments demonstrate that we are able to achieve through-
put levels that are competitive with other software so-
lutions [49, 45, 23] (4.6 Million packets per second for
minimum sized packets), with only a modest penalty on
per-packet latency (between 100us and 500us in the 95th
percentile, depending on the application and traffic pat-
tern). We further demonstrate the ability to seamlessly
fail over, and scale out and scale in without any impact
on the network traffic (as opposed to substantial disrup-
tion for a traditional design). Of course, the stateless net-
work functions approach may not be suitable for all net-
work functions, and there are further optimizations we
can make to increase processing rates. This work, how-
ever, demonstrates that there is value for the functions we
studied and that even with our current prototype, we are
able to match processing rates of other systems with sim-
ilar goals, while providing both scalability and resilience.

98 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

2 Motivation

Simply running virtual versions of the physical appli-
ance counterparts provides operational cost efficiencies,
but falls short in supporting the vision of a dynamic net-
work infrastructure that elastically scales and is resilient
to failure. Here, we illustrate the problems that the tight
coupling of state and processing creates today, even with
virtualized network functions, and discuss shortcomings
of recent proposals.

First, we clarify our definition of the term ‘“state” in
this particular context. Although there is a variety of
network functions, the state within them can be gener-
ally classified into (1) static state (e.g., firewall rules,
IPS signature database), and (2) dynamic state, which
is continuously updated by the network function’s pro-
cesses [45, 21]. The latter can be further classified into (i)
internal instance specific state (e.g., file descriptors, tem-
porary variables), and (ii) network state (e.g., connection
tracking state, NAT private to public port mappings). It
is the dynamic network state that we are referring to that
must persist across failures and be available to instances
upon scaling in or out. The static state can be replicated
to each instance upon boot, so will be accessed locally.

2.1 Dealing with Failure

For failure, we specifically mean crash (as opposed to
byzantine) failures. Studies have shown that failures can
happen frequently, and be highly disruptive [43].

The disruption comes mainly from two factors. To il-
lustrate the first factor, consider Figure 2(a). In this sce-
nario, we have a middlebox, say a NAT, which stores
the mapping for two flows (F1 and F2). Upon fail-
ure, virtualization technology enables the quick launch
of a new instance, and software-defined networking
(SDN) [36, 14, 10] allows traffic to be redirected to the
new instance. However, any packet belonging to flows
F1 or F2 will then result in a failed lookup (no entry in the
table exists). The NAT would instead create new map-
pings, which would ultimately not match what the server
expects. This causes all existing connections to eventu-
ally timeout. Enterprises could employ hot-standby re-
dundancy, but that doubles the cost of the network.

The second factor is due to the high cost of failover
of existing solutions (further discussed below). As such,
the mechanisms tend to be conservative when determin-
ing whether a device has failed [6] — if a device does not
respond to one hello message, does that mean that the
device is down, the network dropped a packet, or that the
device is heavily loaded and taking longer to respond?
Aggressive thresholds cause unnecessary failovers, re-

sulting in downtime. Conservative thresholds may for-
ward traffic to a device that has failed, resulting in dis-
ruption.

Problem with existing solutions

Two approaches to failure resilience have been pro-
posed in the research community recently. First, pico
replication [44] is a high availability framework that fre-
quently checkpoints the state in a network function such
that upon failure, a new instance can be launched and the
state restored. To guarantee consistency, packets are only
released once the state that they impact has been check-
pointed — leading to substantial per-packet latencies (e.g.,
10ms for a system that checkpoints 1000 times per sec-
ond, under the optimal conditions).

To reduce latency, another work proposes logging all
inputs (i.e., packets) coupled with a deterministic replay
mechanism for failure recovery [49]. In this case, the
per-packet latency is minimized (the time to log a single
packet), but the recovery time is high (on the order of
the time since last check point). In both cases, there is
a substantial penalty — and neither deals with scalability
or the asymmetric routing problem (discussed further in
Section 2.3).

2.2 Scaling

As with the case of failover, the tight coupling of state
and processing causes problems with scaling network
functions. This is true even when the state is highly par-
titionable (e.g., only used for a single flow of traffic, such
as connection tracking in a firewall). In Figure 2(b), we
show an example of scaling out. Although a new instance
has been launched to handle the overloaded condition,
existing flows cannot be redirected to the new instance
— e.g., if this is a NAT device, packets from flow F2 di-
rected at the new instance will result in a failed lookup, as
was the case with failure. Similarly, scaling in (decreas-
ing instances) is a problem, as illustrated in Figure 2(c).
As the load is low, one would like to shut down the in-
stance which is currently handling flow F3. However,
one has to wait until that instance is completely drained
(i.e., all of the flows it is handling complete). While
possible, it is something that limits agility, requires spe-
cial handling by the orchestration, and highly depends on
flows being short lived.

Problem with existing solutions

The research community has proposed solutions based
on state migration. The basic idea is to instrument the
network functions with code that can export state from
one instance and import that state into another instance.
Router Grafting demonstrated this for routers (moving

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 99

]
| Fy

/ Load
redirect balance
—

1 J Lookup fails i M Lookup fails

Launch instance Launch instance

(a) Failure (b) Scale out

[Fm]

Load f* f {
balance | P1 4P_syn|

-F3
p3 client /‘ server
I Lookup failsl A

P_synac

Scheduled to shutdown

(c) Scale in (d) Asymmetric / multipath

Figure 2: Motivational examples of traditional network functions and the problems that result from the tight coupling
of state to the network function instance. State associated with some flow is labeled as F (e.g., F2), and the associated

packets within that flow are labeled as P (e.g., P2).

BGP state) [29], and several have since demonstrated
this for middleboxes [45, 23, 22] where partitionable
state can be migrated between instances. State migra-
tion, however, takes time, inherently does not solve the
problem of unplanned failures, and as a central property
relies on affinity of flow to instance (limiting agility).

2.3 Asymmetric / Multi-path Routing

Asymmetric and multi-path routing can cause further
challenges for a dynamic network function infrastruc-
ture: Asymmetric and multi-path [41] routing relates to
the fact that traffic in a given flow may traverse different
paths, and therefore be processed by different instances.
For example, in the scenario of Figure 2(d), where a fire-
wall has established state from an internal client connect-
ing to a server (SYN packet), if the return syn-ack goes
through a different firewall instance, this packet may re-
sult in a failed lookup and get dropped.

Problem with existing solutions

Recent work proposes a new algorithm for intrusion
detection that can work across instances [35], but does so
by synchronizing processing (directly exchanging state
and waiting on other instances to complete process-
ing as needed). Other solutions proposed in industry
strive to synchronize state across middleboxes [31] (e.g.,
HSRP [32]), but generally do not scale well.

3 How Network Functions Access State

The key idea in this paper is to decouple the processing
from the state in network functions — placing the state in
a data store. We call this stateless network functions (or
StatelessNF), as the network functions themselves be-
come stateless, and the statefulness of the applications
(e.g., a stateful firewall) is maintained by storing the state
in a separate data store.

To understand the intuition as to why this is feasible,
even at the rates network traffic needs to be processed,
here we discuss examples of state that would be decou-
pled in common network functions, and what the access
patterns are.

Table 1 shows the network state to be decoupled and
stored in a remote storage for four network functions
(TCP re-assembly is shown separate from IPS for clar-
ity, but we would expect them to be integrated and
reads/writes combined). As shown in the table, and dis-
cussed in Section 2, we only decouple network state.

We demonstrate how the decoupled state is accessed
with pseudo-code of multiple network function algo-
rithms, and summarize the needed reads and writes to
the data store in Table 1. In all algorithms, we present
updating or writing state to the data store as writeRC and
reads as readRC (where RC relates to our chosen data
store, RAMCloud). Below we describe Algorithms 1
(load balancer) and 2 (IPS). The pseudo-code of a state-
ful firewall, TCP re-assembly, and NAT are provided in
Appendix for reference.

For the load balancer, upon receiving a TCP connec-
tion request, the network function retrieves the list of
backend servers from the remote storage (line 4), and
then assigns a server to the new flow (line 5). The load
for the backend servers is subsequently updated (line 6),
and the revised list of backend servers is written into re-
mote storage (line 7). The assigned server for the flow is
also stored into remote storage (line 8), before the packet
is forwarded to the selected server. For a data packet,
the network function retrieves the assigned server for that
flow, and forwards the packet to the server.

Algorithm 2 presents the pseudo-code for a signature-
based intrusion prevention system (IPS), which monitors
network traffic, and compares packets against a database
of signatures from known malicious threats using an al-
gorithm such as Aho-Corasick algorithm [11] (as used

100 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Network Function State Key Value Access Pattern
Pool of Backend Cluster ID IP List 1 read/write at start/end of conn.
Servers
Load Balancer 1 read/write at start/end of conn
Assigned Server 5-Tuple IP Address '
1 read for every other packet
Firewall Flow 5-Tuple TCP Flag 5 read/write at start/end of conn.
1 read for every other packet
Pool of IPs and Ports Cluster ID IP and Port List 1 read/write at start/end of conn.
NAT . 1 read/write at start/end of conn.
Mapping >-Tuple (IF, Port) 1 read for every other packet
Expected Seq Record 5-Tuple (Next Expected Seq, 1 read/write for every packet
Keys for Buffered Pkts)
TCP Re-assembly 1 read/write for ever
Buffered Packets Buffer Pointer Packet y
out-of-order packet
IPS Automata State 5-Tuple Int Iwrite fo.r first packet of flow,
1 read/write for every other packet
Table 1: Network Function Decoupled States
in Snort [9]). At a high-level, a single deterministic au-
Algorithm 1 Load Balancer tomaton can be computed offline from the set of signa-
1: procedure PROCESSPACKET(P: TCPPacket) tures (stored as static state in each instance). As pack-
2 extract 5-tuple from incoming packet ets arrive, scanning each character in the stream of bytes
3 if (P is a TCP SYN) then triggers one state transition in the deterministic automa-
4: backendList <— readRC(Cluster ID) ton, and reaching an output state indicates the presence
5: server <— nextServer(backendList, 5-tuple) of a signature.
6 updateLoad(backendList, server)
7 writeRC(Cluster ID, backendList) The 5-Tuple of the flow forms the key, and the state (to
8 writeRC(5-tuple, server) be stored remotely) simply consists of the state in the de-
9: sendPacket(P, server) terministic automaton (e.g., an integer value representing
10: else the node reached so far in the deterministic automaton).
11: server < readRC(5-tuple) Upon receiving a new flow, the automata state is initial-
12: if (server is NULL) then ized (line 4). For a data packet, the state in the deter-
13: dropPacket(P) ministic automaton for that flow is retrieved from remote
14: else storage (line 7). The bytes from the payload are then
15: sendPacket(P, server) . .o .
scanned (line 8). In the absence of a malicious signature,
the updated state is written into remote storage (line 12),
and the packet forwarded (line 13). Out-of-order packets
- are often considered a problem for Intrusion Prevention
Algorithm 2 TIPS

procedure PROCESSPACKET(P: TCPPacket)

1:

2 extract 5-tuple, and TCP sequence number from P
3 if (P is a TCP SYN) then

4 automataState < initAutomataState()

5: writeRC(5-tuple, automataState)

6 else

7 automataState <— readRC(5-tuple)

8 while (b < popNextByte(P.payload)) do

9: // alert if found match
10: // else, returns updated automata
11: automataState <— process(b, automataState)
12: writeRC(5-tuple, automataState)
13: sendPacket(P)

Systems [52]. Similar to the Snort TCP reassembly pre-
processor [9], we rely on a TCP re-assembly module to
deliver the bytes to the IPS in the proper order.

For the load balancer, we observe that we require one
read for each data packet, and at most one additional read
and write to the remote storage at the start and end of
each connection. For the IPS, we observe that we re-
quire one write to the remote storage to initialize the au-
tomata state at the start of each connection, and one read
and one write to remote storage for each subsequent data
packet of the connection. Table 1 shows similar patterns
for other network functions, and Section 7 analyzes the
performance impact of such access patterns, and demon-
strates that we can achieve multi Gbps rates.

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 101

4 Opverall StatelessNF Architecture

At a high level, StatelessNF consists of a network-wide
architecture where, for each network function applica-
tion (e.g., a firewall), we effectively have the abstraction
of a single network function that reliably provides the
necessary throughput at any given time. To achieve this,
as illustrated in Figure 3, the StatelessNF architecture
consists of three main components — the data store, the
hosts to host the instances of the network function, and
an orchestration component to handle the dynamics of
the network function infrastructure. The network func-
tion hosts are simply commodity servers. We discuss
the internal architecture of network function instances in
Section 5. In this section, we elaborate on the data store
and network function orchestration within StatelessNF.

Data Store
)] e]
Mapager
| State 1
ool il LT
777 3
o Visualize/ | " L ‘
¥ Modify | X |
¥ v X]
Network Network
Function Monitor/ | Controller | Monitor/ Function
Manage Manage
Network Function Host ¢+-------+_ Je------- - Network Function Host

| OF Rules

l“ -'

SDN Switch

Traffic to network functions

Figure 3: StatelessNF System Architecture

4.1 Resilient, Low-latency Data Store

A central idea in StatelessNF, as well as in other uses of
remote data stores, is the concept of separation of con-
cerns. That is, in separating the state and processing,
each component can concentrate on a more specific func-
tionality. In StatelessNF, a network function only needs
to process network traffic, and does not need to worry
about state replication, etc. A data store provides the re-
silience of state. Because of this separation, and because
it resides on the critical path of packet processing, the
data store must also provide low-latency access. For our
purposes, we assume a data store that does not need sup-
port for transactions, but we anticipate exploring the im-
pact of network functions that may require transactions
as future work. In this paper, we choose RAMCloud [39]
as our data store. RAMCloud is a distributed key-value

storage system that provides low-latency access to data,
and supports a high degree of scalability.

Resilient: For a resilient network function infrastructure,
the data store needs to reliably store the data with high
availability.

This property is common in available data stores (key
value stores) through replication. For an in-memory
data store, such as RAMCloud [39], the cost of repli-
cation would be high (uses a lot of RAM). Because of
this, RAMCloud only stores a single copy of each object
in DRAM, with redundant copies on secondary storage
such as disk (on replica machines). To overcome the per-
formance cost of full replication, RAMCloud uses a log
approach where write requests are logged, and the log en-
try is what is sent to replicas, where the replicas fill an in-
memory buffer, and then store on disk. To recover from
a RAMCloud server crash, its memory contents must be
reconstructed by replaying the log file.

Low-Latency: Each data store will differ, but RAM-
Cloud in particular was designed with low-latency access
in mind. RAMCloud is based primarily in DRAM and
provides low-latency access (6us reads, 15us durable
writes for 100 bytes data) at large-scale (e.g., 10,000
servers). This is achieved both by leveraging low-latency
networks (such as Infiniband and RDMA), being en-
tirely in memory, and through optimized request han-
dling. While Infiniband is not considered commodity, we
believe it has growing acceptance (e.g., Microsoft Azure
provides options which include Infiniband [5]), and our
architecture does not fundamentally rely on Infiniband —
RAMCloud developers are working on other interfaces
(e.g., RoCE [47] and Ethernet with DPDK), which we
will integrate and evaluate as they become available.

Going beyond a key-value store: The focus of data
stores is traditionally the key-value interface. That is,
clients can read values by providing a key (which returns
the value), or write values by providing both the key and
value. We leverage this key-value interface for much of
the state in network functions.

The challenge in StatelessNF is that a common type of
state in network functions, namely timers, do not effec-
tively conform to a key-value interface. To implement
with a key-value interface, we would need to continu-
ously poll the data store — an inefficient solution. Instead,
we extend the data store interface to allow for the cre-
ation and update of timers. The timer alert notifies one,
and only one, network function instance, for which the
handler on that instance processes the timer expiration.

We believe there may be further opportunities to op-
timize StatelessNF through customization of the data
store. While our focus in this paper is more on the

102 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

network-wide capabilities, and single instance design, as
a future direction, we intend to further understand how
a data store can be adapted to further suit the needs of
network functions.

4.2 Network Function Orchestration

The basic needs for orchestration involve monitoring the
network function instances for load and failure, and ad-
justing the number of instances accordingly.

Resource Monitoring and Failure Detection: A key
property of orchestration is being able to maintain the
abstraction of a single, reliable, network function which
can handle infinite load, but under the hood maintain as
efficient of an infrastructure as possible. This means that
the StatelessNF orchestration must monitor resource us-
age as well as be able to detect failure, and adjust accord-
ingly — i.e., launch or kill instances.

StatelessNF is not tied to a single solution, but instead
we leverage existing monitoring solutions to monitor the
health of network functions to detect failure as well as
traffic and resource overload conditions. Each system
hosting network functions can provide its own solution —
e.g., Docker monitoring, VMWare vcenter health status
monitoring, IBM Systems Director for server and storage
monitoring. Since we are using Docker containers as a
method to deploy our network functions, our system con-
sists of an interface that interacts with the Docker engines
remotely to monitor, launch, and destroy the container-
based network functions. In addition, our monitoring in-
terface, through ssh calls, monitors the network function
resources (cores, memory, and SR-IOV cards) to make
sure they have enough capacity to launch and host net-
work functions.

Important to note is that failure detection is different
in StatelessNF than in traditional network function so-
lutions. With StatelessNF, we have an effectively zero-
cost to failing over — upon failure, any traffic that would
go through the failed instance can be re-directed to any
other instance. With this, we can significantly reduce
the detection time, and speculatively failover. This is in
contrast to traditional solutions that rely on timeouts to
ensure the device is indeed failed.

Programmable Network: StatelessNF’s orchestration
relies on the ability to manage traffic. That is, when
a new instance is launched, traffic should be directed
to the instance; and when a failure occurs or when we
are scaling-in, traffic should be redirected to a differ-
ent instance. With emerging programmable networks,
or software-defined networks (SDN), such as Open-
Flow [36] and P4 [14], we can achieve this. Further,

as existing SDN controllers (e.g., ONOS [13], Flood-
light [4], OpenDaylight [10]) provide REST APIs, we
can integrate the control into our overall orchestration.

5 StatelessNF Instance Architecture

Whereas the StatelessNF overall architecture provides
the ability to manage a collection of instances, providing
the elasticity and resilience benefits of StatelessNF, the
architecture of the StatelessNF instances are architected
to achieve the deployability and performance needed. As
shown in Figure 4, the StatelessNF instance architecture
consists of three main components — (i) a packet process-
ing pipeline that can be deployed on demand, (ii) high-
performance network I/O, and (iii) an efficient interface
to the data store. In this section, we elaborate on each of
these.

To remoteéiata store
[nic |
Data Store Client Interface
| Buffer Pool | Request Batching |

Pipe 1 thread1 Queue1 Thread 2
NIC 1 — Pull Parse, Lookup, and Process -H»NIC 1 }\

§ N
Input Pipe 2 thread3 queue2 Thread 4 Output
——>{NIC2 m '“I“ Parse, Lookup, and Process -H»NIC 2 F—b

T ; T

1 1 1
\ Pipe NThread Nx2-1 Queue N Thread Nx2 /

NICN m Parse, Lookup, and Process ICN

Figure 4: Stateless Network Function Architecture

5.1 Deployable Packet Processing Pipeline

To increase the performance and deployability of state-
less network function instances, each network function
is structured with a number of packet processing pipes.
The number of pipes can be adaptive based on the traf-
fic load, thus enabling a network function with a better
resource utilization. Each pipe consists of two threads
and a single lockless queue. The first thread is respon-
sible for polling the network interface for packets and
storing them in the queue. The second thread performs
the main processing by dequeuing the packet, perform-
ing a lookup by calling the remote state interface to read,
applying packet processing based on returned state and
network function logic, updating state in the data store,
and outputting the resulting packet(s) (if any).

Network function instances can be deployed and
hosted with a variety of approaches — virtual machines,
containers, or even as physical boxes. We focus on con-
tainers as our central deployable unit. This is due to

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 103

their fast deployment, low performance overhead, and
high reusability. Each network function instance is im-
plemented as a single process Docker instance with in-
dependent cores and memory space/region. In doing so,
we ensure that network functions don’t affect each other.

For network connectivity, we need to share the phys-
ical interface among each of the containers (pipelines).
For this, we use SR-IOV[7] to provide virtual interfaces
to each network function instance. Modern network
cards have hardware support for classifying traffic and
presenting to the system as multiple devices — each of the
virtual devices can then be assigned to a network func-
tion instance. For example, our system uses Intel x520
server adapters[27] that can provide up to 126 virtual
cards with each capable of reaching maximum traffic rate
(individually). For connectivity to the data store, as our
implementation focuses on RAMCloud, each network
function host is equipped with a single Infiniband card
that is built on the Mellanox RDMA library package[37],
which allows the Infiniband NIC to be accessed directly
from multiple network function user-space applications
(bypassing the kernel). As new interfaces for RAMCloud
are released, we can simply leverage them.

5.2 High-performance Network I/O

As with any software-based network processing applica-
tion, we need high performance 1/O in order to meet the
packet processing rates that are expected. For this, we
leverage the recent series of work to provide this — e.g.,
through zero copy techniques. We specifically structured
our network functions on top of the Data Plane Develop-
ment Kit (DPDK) architecture [26]. DPDK provides a
simple, complete framework for fast packet processing.

One challenge that arises with the use of DPDK
in the context of containers is that large page sup-
port is required for the memory pool allocation used
for packet buffers and that multiple packet processing
pipes (containers) may run simultaneously on a single
server. In our case, each pipe is assigned a unique
page filename and specified socket memory amount to
ensure isolation>. We used the DPDK Environment
Abstraction Layer (EAL) interface for system mem-
ory allocation/de-allocation and core affinity/assignment
procedures among the network functions.

2 After several tests, we settled on 2GB socket memory for best per-
formance.

5.3 Optimized Data Store Client Interface

Perhaps the most important addition in StatelessNF is the
data store client interface. The importance stems from
the fact that it is through this interface, and out to a re-
mote data store, that lookups in packet processing oc-
cur. That is, it sits in the critical path of processing a
packet and is the main difference between stateless net-
work functions and traditional network functions.

Each data store will come with an API to read and
write data. In the case of RAMCloud, for example, it
is a key-value interface which performs requests via an
RPC interface, and that leverages Infiniband (currently).
RAMCloud also provides a client interface which ab-
stracts away the Infiniband interfacing.

To optimize this interface to match the common struc-
ture of network processing, we make use of three com-
mon techniques:

Batching: In RAMCloud, a single read/write has low-
latency, but each request has overhead. When packets
are arriving at a high rate, we can aggregate multiple
requests into a single request. For example, in RAM-
Cloud, a single read takes 6{s, whereas a multi-read of
100 objects takes only S1us (or, effectively 0.51us per
request). The balance here, for StatelessNF, is that if the
the batch size is too small, we may be losing opportunity
for efficiency gains, and too long (even with a timeout),
we can induce higher latency than necessary waiting for
more packets. Currently, we have a fixed batch size to
match our experimental setup (100 objects), but we ul-
timately envision an adaptive scheme which increases or
decreases the batch size based on the current traffic rates.

Pre-allocating a pool of buffers: When submitting re-
quests to the data store, the client must allocate memory
for the request (create a new RPC request). As this in-
terface is in the critical path, we reduce the overhead for
allocating memory by having the client reuse a preallo-
cated pool of object buffers.

Eliminating a copy: When the data from a read request
is returned from the data store to the client interface, that
data needs to be passed to the packet processing pipeline.
To increase the efficiency, we eliminate a copy of the data
by providing a pointer to the buffer to the pipeline which
issued the read request.

6 Implementation

The StatelessNF orchestration controller is implemented
in Java with an admin API that realizes the implemen-
tation of elastic policies in order to determine when to

104 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

create or destroy network functions. At present, the poli-
cies are trivial to handle the minimal needs of handling
failure and elasticity, simply to allow us to demonstrate
the feasibility of the StatelessNF concept (see Section 7
for elasticity and failure experiments). The controller in-
teracts with the Floodlight [4] SDN controller to steer the
flows of traffic to the correct network function instances
by inserting the appropriate OpenFlow rules. The con-
troller keeps track of all the hosts and their resources,
and network function instances deployed on top of them.
Finally, the controller provides an interface to access and
monitor the state in the data store, allowing the operator
to have a global view of the network status.

We implemented three network functions (firewall,
NAT, load balancer) as DPDK [26] applications, and
packaged as a Docker container. For each, we imple-
mented in a traditional (non-stateless) and stateless fash-
ion. In each case, the only difference is that the non-
stateless version will access its state locally while the
stateless version from the remote data store. The client
interface to the data store is implemented in C++ and car-
ries retrieval operations to RAMCloud [39]. The packet
processing pipes are implemented in C/C++ in a se-
quence of pipeline functions that packets travel through,
and only requires developers to write the application-
specific logic — thus, making modifying the code and
adding new network function relatively simple. The data
store client interface and the packet processing pipes are
linked at compile time.

7 Evaluation

This section evaluates the network functions perfor-
mance, the recovery times in failure events, and the per-
formance impact when scaling in/out with the proposed
stateless architecture.

7.1 Experimental Setup

Our experimental setup is similar to the one depicted in
Figure 3. It consists of six servers and two switches. Two
servers are dedicated to hosting the network function in-
stances. These two servers are connected via Infiniband
to two other servers hosting RAMCloud (one acting as
the RAMCloud coordinator, and the other server storing
state), and are connected via Ethernet to a server acting
as the traffic generator and sink (not shown in Figure 3).
The last server hosts the StatelessNF controller which or-
chestrates the entire management. Specifically, we use
the following equipment:

Baseline FW —
Stateless FW —&—
Baseline LB

Baseline FW
Stateless FW —&—
Baseline LB

[
)
i
5]

@
©

Stateless LB —o—
Baseline NAT
Stateless NAT —&—

Stateless LB —e—
Baseline NAT
Stateless NAT —&—

. . . . i 0
67 2 2 L 021%, 6 L B 525
Packet size (bytes) Packet size (bytes)

(b) Short flow case

)
o

IS

Throughput (Mpps)
IS

Throughput (Mpps)

N
N

o

202250,
(a) Long flow case

Figure 5: Throughput of different packet sizes for long
(a) and short (b) flows (i.e., flow sizes >1000 and <100,
respectively) measured in the number of packets per sec-
ond.

e Network Function hosts: 2 Dell R630 Servers [16]:
each has 32GB RAM, 12 cores (2.4GHz), one Intel
10G Server Adapter with SR-IOV support [27], and
one 10G Mellanox InfiniBand Adapter Card [37].

e RAMCloud: 2 Dell R720 Servers [17], each with
48GB RAM, 12 cores (2.0GHz), one Intel 10G
Server Adapter [27], one 10G Mellanox InfiniBand
Adapter Card [37].

e Traffic generator/sink: 1 Dell R520 Servers [15]:
4GB RAM, 4 cores (2.0GHz), 2 Intel 10G Server
Adapters [27] .

e Control: 1 Dell R520 Servers [15]: 4GB RAM, 4
cores (2.0GHz) to run StatelessNF and Floodlight
controllers.

e SDN Switch: OpenFlow-enabled 10GbE Edge-
Core [19].

e Infiniband Switch: 10Gbit Mellanox Infiniband
switch between RAMCloud nodes and the network
function hosts [38].

7.2 StatelessNF Performance
7.2.1 Impact of needing remote reads/writes

It is first critical to understand the performance of the
RAMCloud servers as they may be a performance bottle-
neck, and limit the rates we can attain. Our benchmark
tests reveal that a single server in RAMCloud can han-
dle up to 4.7 Million lookup/sec. For write operations, a
single server can handle up to 0.7 Million write/second.
The performance of a network function therefore
heavily depends on the packets sizes, the network func-
tion’s access patterns to the remote storage, and the pro-
cessed traffic characteristics: For example, while a load

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 105

balancer requires three write operations per flow, a fire-
wall requires five write operations per flow. As such,
whether traffic consists of short flows (e.g., consisting
of only hundreds of packets), or long flows (e.g., com-
prising tens of thousands of packets), these differences
in access patterns can have a significant impact on the
network function performance. In particular, short flows
require many more writes for the same amount of traf-
fic. We consequently distinguish three cases for the pro-
cessed traffic: long, short, and average in regards to the
size and number of flows. The long case consists of a
trace of 3,000 large TCP flows of 10K packets each. The
short case consists of a trace of 100,000 TCP flows of
100 packets each. Finally for the average case, we re-
played a real captured enterprise trace [3] with 17,000
flows that range in size from 10 to 1,000 packets. In each
case, we also varied the packet sizes to understand their
impact on the performance. We used Tcpreplay with
Netmap [51] to stream the three types of traces.

Figure 5 shows the throughput of StatelessNF mid-
dleboxes compared to their non-stateless counterparts
(which we refer to as baseline) with long and short flows
of different packet sizes. For minimum sized packets,
we obtain throughputs of 4.6Mpps. For small sized
packets (less than 128 bytes), the gap between stateless
and non-stateless in throughput is due to a single RAM-
Cloud server being able to handle around 4.7 Million
lookups/sec. In contrast, in the baseline, all read and
write operations are local. We highlight that such sizes
are used to test the upper bound limits of our system.

As packets get larger in size (greater than 128 bytes),
the rates of stateless and baseline network functions con-
verge. The obtained throughputs are competitive with
those of existing elastic and fail resilience software so-
lutions [49, 45, 23]. To understand the performance of
stateless network functions with real traces, we increase
the rate of the real trace to more than the original rate
at which it was captured®, and analyze the achievable
throughput. Since the packet sizes vary considerably (80
to 1500 bytes), we report the throughput in terms of traf-
fic rate (Gbit/sec) rather than packets/sec. Figure 6 shows
that the statelessNF firewall and loadbalancer have com-
parable performance than their baseline counterpart. The
stateless NAT reaches a limit that is 1Gbps lower than
the non-stateless version. Finally, we also observe that
the performance of the NAT are several Gbps lower than
the firewall and load balancer. This is due to the over-
head of IP header checksum after modifying the packet
IP addresses and port numbers.

3The rates of enterprise traces we found vary from 0.1 to 1 Gbit/sec

10 T
S
S/
Qs e
8r s,:@//};@klfy 1
@ 6, L6
o ‘9[@/ Ss A
a &
o 6 Ss Vé 7
2
gar e,
o Uy, /V,q ~
Q Css P
2+ A4
0 I L A

1 2 3 45 6 7 8 9

Transmission rate(Gbps)

Figure 6: Measured goodput (Gbps) for enterprise traces.

1

CDF of Packets
o o o
2 o »

o
o

‘
¢ Baseline NAT

A # Stateless NAT = = +

1

CDF of Packets
o o o
5 o ®

o
N

.
4 Baseline LB
P Stateless LB = = *

500 1000 1500 2000 2500
Round Trip Time (usec)

o

500 1000 1500 2000 2500
Round Trip Time (usec)

(a) NAT (b) Load Balancer

Figure 7: Round-trip time (RTT) of packets.

7.2.2 Latency

The interaction with the remote storage can increase the
latency of each packet, as every incoming packet must be
buffered until its lookup operation is completed. To eval-
uate the delay increase, we compared the round-trip time
(RTT) of each packet in the stateless and baseline net-
work functions. We timestamp packets, send the traffic
through the network function which resends the packets
back to the initial host.

Figure 7 shows the cumulative distribution function
(CDF) for the RTT of packets traversing the NAT and
load balancer®. In the 50th percentile, the RTT of State-
lessNF packets is only 100us larger than the baseline’s
for the load balancer and NAT, and in the 95th percentile
the RTT is only 300us larger. The added delay we see
in StatelessNF is a combination of read misses (which
can reach 100us), preparing objects for read requests
from RAMCloud, casting returned data, and the actual
latency of the request. These numbers are in the range
of other comparable systems (e.g., the low-latency roll-
back recovery system exhibited about a 300us higher la-
tency than the baseline [49]). Further, while the reported
latency when using Ethernet (with DPDK) to communi-

4The RTT for firewall (both stateless and baseline) showed similar
trend to load balancer with a better average delay (67 s less).

106

14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

cate with RAMCloud is higher than Infiniband (31.1us,
read 100B, and 77us write 100B), it is still less than the
average packet delays reported with StatelessNF system
(65us, 100us, and 300us for firewall, load balancer, and
NAT respectively). Given the actual network traversals
of requests can occur in parallel as the other aspects of
the request, we believe that the difference in latency be-
tween Ethernet with DPDK and Infiniband can be largely
masked. We intend to validate as future work.

7.2.3 IPS Analysis

This section analyzes the impact of decoupling the state
for an IPS. The overall processing of an IPS is more com-
plex (Section 3) than the three network functions we pre-
viously analyzed. However, its access patterns to the re-
mote storage is only incrementally more complex.

To analyze the impact of decoupling automaton state
into remote storage, we implemented an in-line stateless
network function that emulates a typical IPS in terms of
accessing the automaton state and performs a read and
write operation for every packet. For comparison, we run
Snort [8] as an in-line IPS, and streamed real world enter-
prise traces through both instances: Snort and our state-
less emulated IPS. The stateless emulated IPS was able
to reach a throughput of 2.5Gbit/sec while the maximum
performance for the Snort instance was only 2Gbit/sec.
These results show that for an IPS, the performance bot-
tleneck is the internal processing (e.g., signature search),
and not the read/write operations to the remote storage.

7.3 Failure

As we discussed in Section 3, in the case of failover, the
instance we failover to can seamlessly handle the redi-
rected traffic from the failed instance without causing
any disruption for the traffic. To illustrate this effect,
and compare to the traditional approach, we performed a
number of file downloads that go through a firewall, and
measured the number of successful file downloads and
the time require to complete all of the downloads in the
following cases: 1) baseline and stateless firewalls with
no failure; 2) baseline and stateless firewall with failure
where we redirect traffic to an alternate instance. In this
case, we are only measuring the effect of the disruption
of failover, as we assume a perfect failure detection, and
simulate this by programming the SDN switch to redi-
rect all traffic at some specific time. If we instrumented
failure detection, the results would be more pronounced.

Figure 8 shows our results where we downloaded up to
500 20MB files in a loop of 100 concurrent http down-
loads through the firewall. As we can see, the baseline

Baseline FW
Baseline FW - failover
Stateless FW - @ -
Stateless FW - failover -

@
=}
S
»
a
=}
S

xe
'

IS
=3
S
u
IS
S
S

B]
-

N
=3
S

P

[]
Time to complete (sec)
8
3

BN oW

2 9o 9

S oS o
L]

=
_"‘
-8

N
1)
S

[o
100 200 300 400 500 100 200 300 400 500
Number of download requests Number of download requests

Successfully completed requests

(a) Completed requests (b) Time to complete requests

Figure 8: (a) shows the total number of successfully
completed requests, and (b) shows the time taken to sat-
isfy completed requests.

_8f ::-c:)(::\‘(ldeal =——=— |
Q % Baseline FW
Qe - - =
g 6 -sq Stateless FW
=

4l 4
g fj‘
S P
02 r’)

0 1” 1 1 1 1 I-

0 20 40 60 80 100
Time (sec)

Figure 9: Goodput (Gbps) for stateless and baseline fire-
walls while scaling out (t=25s) and in (t=75s).

firewall is significantly affected by the sudden failure be-
cause the backup instance will not recognize the redi-
rected traffic, hence will drop the connections, which in
turn results in the client re-initiating the connections af-
ter a TCP connection timeout®. Not only was the state-
less firewall able to successfully complete all downloads,
but the performance was unaffected due to failure, and
matched the download time of the baseline firewall when
it did not experience failure.

7.4 Elasticity

In this paper, we claim that decoupling state from pro-
cessing in network functions provides elasticity, where
scaling in/out can be done with no disruption to the traf-
fic. To evaluate StatelessNF’s capability of scaling in
and out, we performed the following experiment: we
streamed continuous traffic of tcp packets while gradu-
ally increasing the traffic rate every 5 seconds (as shown
in Figure 9), keep it steady for 5 seconds, and then start
decreasing the traffic rate every 5 seconds. The three
lines in Figure 9 represent: the ideal throughput (Ideal)
which matches the send rate, the baseline firewall, and

>We significantly reduced the TCP connection timeout in Linux to
20 seconds, from the default of 7200 seconds.

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 107

the stateless firewall. The experiment starts with all traf-
fic going through a single firewall. After 25 seconds,
when the traffic transmitted reaches 4Gbit/sec, we split it
in half and redirect it to a second firewall instance. Then
after 25 seconds of decreasing the sending rate, we merge
the traffic back to the first firewall instance.

As Figure 9 shows, the stateless firewall matches the
base goodput. That is because the newly added firewall
already has the state it needs to process the redirected
packets, and therefore does not get affected by traffic
redirection. On the other hand, with the baseline firewall,
once the traffic is split, the second firewall starts dropping
packets because it does not recognize them (i.e., doesn’t
have state for those flows). Similarly, upon scaling in,
the firewall instance does not have the state needed for
the merged traffic and thus breaks the connections.

8 Discussion

The performance of our current prototype is not a fun-
damental limit of our approach. Here we discuss two
aspects which can further enhance performance.

Reducing interactions with a remote data store: Fun-
damentally, if we can even further reduce the interactions
with a remote data store, we can improve performance.
Some steps in this direction that we intend to pursue as
future work include: (i) reducing the penalty of read
misses by integrating a set membership structure (e.g.,
a bloom filter [2]) into the RAMCloud system so that we
do not have to do a read if the data is not there, (ii) ex-
plore the use of caching for certain types of state (read
mostly), and (iii) exploring placement of data store in-
stances, perhaps even co-located with network function
instances, in order to maintain the decoupled architec-
ture, but allowing more operations to be serviced by the
local instance and avoiding the consistency issues with
cache (remote reads will still occur when the data isn’t
local, providing the persistent and global access to state).

Date store scalability We acknowledge that we will ul-
timately be limited by the scalability of the data store,
but generally view data stores as scalable and an active
area of research. In addition, while we chose RAM-
Cloud for its low latency and resiliency, other systems
such as FaRM [18] (from Microsoft) and a commercially
available data store from Algo-Logic [1] report better
throughput and lower latency, so we would see an im-
mediate improvement if they become freely available.

9 Related Work

Beyond the most directly related work in Section 2, here
we expand along three additional categories.

Disaggregation: The concept of decoupling processing
from state follows a line of research in disaggregated ar-
chitectures. [34], [33], and [40] all make the case for dis-
aggregating memory into a pool of RAM. [24] explores
the network requirements for an entirely disaggregated
datacenter. In the case of StatelessNF, we demonstrate a
disaggregated architecture suitable for the extreme use
case of packet processing. Finally, this paper signifi-
cantly expands on our previous workshop paper [28] with
a complete and optimized implementation of the entire
system and three network functions, and a complete eval-
uation demonstrating scalability and resilience.

Data plane processing: In addition to DPDK, frame-
works like netmap [46] and Click [30] (particularly Click
integrated with netmap and DPDK [12]) also provide
efficient software packet processing frameworks, and
therefore might be suitable for StatelessNF.

Micro network functions: The consolidated middlebox
[48] work observed that course grained network func-
tions often duplicate functionality as other network func-
tions (e.g., parsing http messages), and proposed to con-
solidate multiple network functions into a single device.
In addition, e2 [42] provides a coherent system for man-
aging network functions while enabling developers to fo-
cus on implementing new network functions. Each are
re-thinking the architecture and complementary.

10 Conclusions and Future Work

In this paper, we presented stateless network functions,
a novel design and architecture for network functions
where we break the tight coupling of state and processing
in network functions in order to achieve greater elastic-
ity and failure resiliency. Our evaluation with a complete
implementation demonstrates these capabilities, as well
as demonstrates that we are able to process millions of
packets per second, with only a few hundred microsec-
ond added latency per packet. We do imagine there are
further ways to optimize the performance and a desire
for more network functions, and we leave that as future
work. We instead focused on demonstrating the viability
of a novel architecture which, we believe, fundamentally
gets at the root of the important problem.

108 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]
(9]

[10]

[11]

[12]

[13]

Algo-logic systems.
com/.

http://algo-logic.

Bloom filter. https://en.wikipedia.org/
wiki/Bloom_filter.

Digital corpora. http://digitalcorpora.
org/corp/nps/scenarios/
2009-m57-patents/net/.

Floodlight. http://floodlight.
openflowhub.org/.

Microsoft Azure Virtual Machines.
https://azure.microsoft.com/
en—-us/documentation/articles/
virtual-machines-linux—-a8-a9\
-al0-all-specs/.

Palo Alto Networks: HA Concepts.
https://www.paloaltonetworks.com/
documentation/70/pan-os/pan—-os/
high—-availability/ha-concepts.
html.

Single-root IOV. https://en.wikipedia.
org/wiki/Single—root_IOV.

Snort IDS. https://www.snort.org.

Snort Users Manual 2.9.8.3.
http://manual-snort-org.
s3-website-us—-east—-1.amazonaws.

com/.

The OpenDaylight Platform.
opendaylight.org/.

https://www.

A. V. Aho and M. J. Corasick. Efficient string
matching: An aid to bibliographic search. Com-
mun. ACM, 1975.

T. Barbette, C. Soldani, and L. Mathy. Fast
userspace packet processing. In Proceedings of
the Eleventh ACM/IEEE Symposium on Architec-
tures for Networking and Communications Sys-
tems, ANCS ’15, pages 5-16, Washington, DC,
USA, 2015. IEEE Computer Society.

P. Berde, M. Gerola, J. Hart, Y. Higuchi,
M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow, and G. Parulkar. ONOS:
Towards an Open, Distributed SDN OS. In Pro-
ceedings of the Third Workshop on Hot Topics in

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

Software Defined Networking (HotSDN), pages 1—
6. ACM, Aug 2014.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McK-
eown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4: Pro-
gramming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., 44(3):87-95,
July 2014.

Dell. Poweredge r520 rack server.
//www.dell.com/us/business/p/
poweredge—-r520/pd.

http:

Dell. Poweredge r630 rack server.
//www.dell.com/us/business/p/
poweredge-r630/pd.

http:

Dell. Poweredge r720 rack server.
//www.dell.com/us/business/p/
poweredge—-7520/pd.

http:

A. Dragojevi¢, D. Narayanan, M. Castro, and
O. Hodson. FaRM: Fast Remote Memory. In
Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI), pages 401-414. USENIX Association, Apr
2014.

Edge-Core. 10gbe data center switch.
http://www.edge—-core.com/ProdDtl.
asp?sno=436&AS5610-52X.

D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev:
A fast and reliable software network load balancer.
In USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), Mar. 2016.

A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella.
Toward software-defined middlebox networking. In
Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, HotNets-XI, pages 7-12, New
York, NY, USA, 2012. ACM.

A. Gember-Jacobson and A. Akella. Improving the
safety, scalability, and efficiency of network func-
tion state transfers. In Proc. 2015 ACM SIGCOMM
Workshop on Hot Topics in Middleboxes and Net-
work Function Virtualization (HotMiddlebox), Aug
2015.

A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella.

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation

109

OpenNF: Enabling Innovation in Network Function [33] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Control. In Proceedings of the ACM SIGCOMM. Reinhardt, and T. F. Wenisch. Disaggregated mem-
ACM, Aug 2014. ory for expansion and sharing in blade servers. In

. . Proceedings of the 36th International Symposium

[24] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Sh" on Computer Architecture (ISCA), Jun 2009.
and S. Shenker. Network support for resource dis-
aggregation in next-generation datacenters. In Pro- ~ [34] K. Lim, Y. Turner, J. R. Santos, A. AuYoung,
ceedings of the 12th ACM Workshop on Hot Topics J. Chang, P. Ranganathan, and T. F. Wenisch.
in Networks (HotNets). ACM, Nov 2013. System-level implications of disaggregated mem-

ory. In Proceedings of 18th IEEE International

[25] J. Hwang, K. K. Ramakrishnan, and T. Wood. Symposium High Performance Computer Architec-

Netvm: High performance and flexible network- ture (HPCA). IEEE, Feb 2012.
ing using virtualization on commodity platforms.
In Proceedings of the 11th USENIX Conference [35] J. Ma, F. Le, A. Russo, and J. Lobo. Detecting
on Networked Systems Design and Implementation, distributed signature-based intrusion: The case of
NSDI' 14, pages 445-458, Berkeley, CA, USA, multi-path routing attacks. In IEEE INFOCOM.
2014. USENIX Association. IEEE, 2015.

[26] Intel. Data plane development kit. http:// [36] N. McKeown, T. Anderson, H. Balakrishnan,
dpdk . org. G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner. Openflow: enabling innovation

[27] Intel. Ethernet converged network adapter. in campus networks. ACM SIGCOMM Computer
http://www.intel.com/content/ Communication Review, 38(2):69-74, Aug 2008.
www/us/en/ethernet-products/ [37] Mellanox. Infiniband single/dual-port adapter.
converged—-network—adapters/ http://www.mellanox.com/page/
ethernet-x520-server—adapters-brief.) : : ,
html. products_dyn?product_family=161¢&

mtag=connectx_3_pro_vpi_card.

[28] M. Kablan, B. Caldwell, R. Han, H. J.amjoom, [38] Mellanox. Infiniband switch. http:
and E. Keller. Stateless network functions. In / Jwww .mellanox . com/related—docs/
Proc. ACM SIGCOMM Workshop on Hot Topics in rod eth switches/PB SX1710.pdf
Middleboxes and Network Function Virtualization prod_eti— - “Pet
(HotMiddlebox), 2015. [39] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ouster-

hout, and M. Rosenblum. Fast Crash Recovery in

(291 E. Keller, J. Rexford, ‘and J. Van Der Merwe. RAMCloud. In Proceedings of the 23rd ACM Sym-
Seamless B'GP Migration with Router Graftl.ng. posium on Operating Systems Principles (SOSP),
In Proceedings of the 7th USENIX Symposium pages 29-41. ACM, Oct 2011.
on Networked Systems Design and Implementation
(NSDI), pages 235-248. USENIX Association, Apr ~ [40] J. Ousterhout, P. Agrawal, D. Erickson,
2010. C. Kozyrakis, J. Leverich, D. Mazieres, S. Mitra,

A. Narayanan, G. Parulkar, M. Rosenblum, S. M.

[30] E.Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Rumble, E. Stratmann, and R. Stutsman. The
Kaashoek. The Click Modular Router. ACM Trans- Case for RAMClouds: Scalable High-performance
actions on Computer Systems (TOCS), 18(3):263— Storage Entirely in DRAM. SIGOPS Oper. Syst.
297, Aug. 2000. Rev., 43(4), Jan. 2010.

[31] J. Kronlage. Stateful ~NAT with [41] C. Paasch and O. Bonaventure. Multipath TCP.
Asymmetric Routing. http:// Communications of the ACM, 57(4):51-57, April
brbccie.blogspot.com/2013/03/ 2014.
stateful-nat-with-asymmetric-routing.
htm1, March 2013. [42] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Rat-

nasamy, L. Rizzo, and S. Shenker. E2: A Frame-

[32] T. Li, B. Cole, P. Morton, and D. Li. RFC 2281: work for NFV Applications. In Proceedings of the
Cisco Hot Standby Router Protocol (HSRP), March 25th ACM Symposium on Operating Systems Prin-
1998. ciples (SOSP). ACM, Oct 2015.

110 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

R. Potharaju and N. Jain. Demystifying the dark
side of the middle: A field study of middlebox fail-
ures in datacenters. In Proceedings of the 2013
Conference on Internet Measurement Conference
(IMC), Oct 2013.

S. Rajagopalan, D. Williams, and H. Jamjoom. Pico
replication: A high availability framework for mid-
dleboxes. In Proceedings of the 4th Annual Sym-
posium on Cloud Computing (SoCC). ACM, Oct
2013.

S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/Merge: System Support for
Elastic Execution in Virtual Middleboxes. In Pro-
ceedings of the 10th USENIX Network System De-
sign and Implementation (NSDI), pages 227-240.
USENIX Association, April 2013.

L. Rizzo. Netmap: A Novel Framework for
Fast Packet I/0. In Proceedings of the 2012
USENIX Conference on Annual Technical Confer-
ence, USENIX ATC’12, pages 9-9, Berkeley, CA,
USA, 2012. USENIX Association.

RoCE. RDMA over Converged Ethernet.
https://en.wikipedia.org/wiki/
RDMA_over_Converged_Ethernet.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and
G. Shi. Design and implementation of a consol-
idated middlebox architecture. In Proceedings of
the 9th USENIX Conference on Networked Systems
Design and Implementation, NSDI’12, pages 24—
24, Berkeley, CA, USA, 2012. USENIX Associa-
tion.

J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krish-
namurthy, C. Maciocco, M. Manesh, J. a. Martins,
S. Ratnasamy, L. Rizzo, and S. Shenker. Rollback-
recovery for middleboxes. SIGCOMM Comput.
Commun. Rev., 45(4):227-240, Aug. 2015.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making middleboxes
someone else’s problem: Network processing as a
cloud service. In Proceedings of the ACM SIG-
COMM. ACM, Aug 2012.

tcpreplay. Tcpreplay with netmap.
//tcpreplay.appneta.com/wiki/
howto.html.

http:

X. Yu, W.-c. Feng, D. D. Yao, and M. Becchi. O3fa:
A scalable finite automata-based pattern-matching

engine for out-of-order deep packet inspection. In
Proceedings of the 2016 Symposium on Architec-
tures for Networking and Communications Systems
(ANCS), Mar 2016.

A Appendix

Algorithm 3 TCP Re-assembly

1: procedure PROCESSPACKET(P: TCPPacket)

2:

extract S-tuple from incoming packet
if (P is a TCP SYN) then
record <— (getNextExpectedSeq(P), createEmpty-

BufferPointerList())

writeRC(5-tuple, record)
sendPacket(P)
else

record <— readRC(5-tuple)

if (record == NULL) then
dropPacket(P);

if (isNextExpectedSeq(P)) then
record.expected <— getNextExpectedSeq(P)
sendPacket(P)
// check if we can send any packet in buffer
while (bufferHasNextExpected-

Seq(record.buffPtr, record.expected)) do

16: P < readRC(pop(record.buffPtr).pktBuffKey)
17: record.expected < getNextExpected-
Seq(p)
18: sendPacket(P)
19: writeRC(5-tuple, record)
20: else
21: // buffer packet
22: pktBuffKey < getPacketHash(P.header)
23: writeRC(pktBuffKey, P)
24: record.buffPtr <— insert(record.buffPtr, p.seq,
pktBuftKey)
25: writeRC(5-tuple, record)
Algorithm 4 Firewall
1: procedure PROCESSPACKET(P: TCPPacket)
2: key < getDirectionalStuple(P, i)
3 sessionState < readRC(key)
4: newState <— updateState(sessionState)
5: if (stateChanged(newState, sessionState)) then
6: writeRC(key, newState)
7 if (rule-check-state(sessionState) == ALLOW) then
8 sendPacket(P)
9: else
10: dropPacket(P)

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 111

Algorithm 5 NAT

1: procedure PROCESSPACKET(P: Packet)

2 extract 5-tuple from incoming packet

3 (IP, port) <— readRC(5-tuple)

4 if ((IP, Port) is NULL) then

5: list-IPs-Ports + readRC(Cluster ID)

6: (IP, Port) < select-IP-Port(list-IPs-Ports, 5-tuple)
7 update(list-IPs-Ports, (IP, Port))

8 writeRC(Cluster ID, list-IPs-Ports)

9 writeRC(5-tuple, (IP, Port))

10: extract reverse-5-tuple from incoming packet plus
new IP-port
11: writeRC(reverse-5-tuple, (P.IP, P.Port))

12: P’ < updatePacketHeader(P, (IP, Port))
13: sendPacket(P’)

112 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

