


Networks Need Network Functions

NAT Intrusion Prevention

Firewall \Q/

To protect and manage the network traffic

Load balancer




Networks Need *Agile* Network Functions

Storage

—————————————————

-

—————————

& &5 &)

=) =) =,
Eﬁﬁg@ﬁﬁa/
mma\

Compute

Data Center Infrastructure

To match the agility of today’s (cloud)
compute infrastructure @’



Network Agility -> Easy and Quickly to Use

Seamless Scalability
Failure Resiliency
Instant Deployment

Without Sacrificing Performance

Gy



Virtual Network Functions to the Rescue ?

Hardware Network Functions Software Network Functions
(Virtual Machines)

Gy



Same core architecture,
same fundamental limit in agility

e T



The Challenge is with The State

* Firewall : connection tracking information

* Load balancer: mapping to back end server

* Intrusion Prevention: automata state

* NAT: mapping of internal to external addresses




Example Problem 1: Failure

| P2

P1

P3

State
Redirect Traffic

Lookup

fails!1! @’




Example Problem 2: Scaling In and Out
Stat(:.

Merge/Split

Traffic Flow3




Example Problem 3: Asymmetric / Multi-path

State
Flow1 (syn)
4 :
iy —— =
State P2 synack
H
Lookup fails!!! =
' Gy




Other Solutions

e T



Industry Approaches to Deal with State

HA Pairs
* Doubles cost, limited scalability, unreliable [Jain2009]

Don’t use state

* e.g., Google Maglev
° (haSh 5_tup|e to SeIeCt baCkend)' Service 1 Service 2 Service 1 Service 2
* Limited applications




Dealing with State: State Migration (for scaling)

Router Grafting [NSDI 2010], State
Split Merge [NSDI 2013],

OpenNF [SIGCOMM 2014]

 When needed, migrate the relevant state

Flow1l

Flow2

* Only handles pre-planned events

* High overhead to migrate state (e.g., 100 ms) State

* Relies on flow affinity




Dealing with State: Check Pointing (for failure)

Pico Replication [SoCC 2013]

* Periodically checkpoint state
(only diffs, and only network state)

Limitations:
* Quick recovery from failure

* High packet latency
(can’t release packets until state check pointed)

State

Flowl| | Flow2

Backup
State




Dealing with State: Deterministic Replay (for failure)

FTMB [SIGCOMM 2015]

* Log events so that upon failure we can re-play those
events to rebuild the state

e Use periodic check pointing to limit the replay time

* Improves packet latency

Limitation:
* Long recovery time (time since last check point)

State

Flowl| |Flow2

Log of
events




What is the root of the problem?

e T



.. Appliance mentality

| e——

@ STATE
%‘ PROCESS

e T




Stateless Network Functions

* Re-designed as a distributed system from the ground up.
* Decoupling the state from the processing

i PROCESS i 3




Benefits of Decoupling State from Processing

Traditional Network Function
e.g., Firewall

| e— |

@ STATE
E‘ PROCESS

- High overhead to manage state

- Relies on flow affinity

- Hard to achieve both resiliency
and elasticity

Stateless Network Function
e.g., Stateless Firewall

Seamless elasticity

No disruption in failure

Doesn’t rely on flow affinity
Centralized state (simpler to manage)

Gy



s this even possible?

We need to handle millions of packets per second

e T



A Counter-Intuitive Proposal... But it is possible

Why we can do this:

 Common packet processing pipeline has a lookup stage
(so, per packet request to data store, but not lots of back and forth)

* Requests to data store are much smaller than packets
(so, scaling traffic rates does not result in same scaling of data store)

* Advances in low-latency technologies
(data stores, network 1/0, etc.)

Gy



How State is Accessed

* Example for Load balancer

Available Assigned 15t Packet of flow
Backend Backend (Pick an available server)
Servers Server 1 Read from Available table,
Cluster D | | 0 Stuple| | * 1 Write to Assigned table

Every other Packet of flow
(look up assigned server)
e 1 Read from Assignhed table

| | ﬁ




System Architecture
StatelessNF

e T



StatelessNF Architecture

Timeout 1 Data Store
Manager

Network

Function Mahitor/
Mahage

Network Function Host | % -} ==~

I INCULVWVWUI N 1] unwun 11vo

Controller

Traffic to network functions @



Data Store

Timeout
S @ Manager

State

Data Store
(RAMCloud)

o
i

-

* Low latency, etc.
* Also needs (or could use) support for timers, atomic updates, queues

Gy



Network Function Instances

/)T
|4
4
u_t Network
Function

Network Function Host

I INCULVWVWUI N 1] unwun 1Mvo

IS




High-Performance Network /O

e.g., DPDK, netmap To remote,data store

v

Thread 1
/V NIC1 — RX TX >NIC 1 N

Input Output




e.g., Docker

Input

To remoteéiata store

Thread 2

»Parse, Lookup, and Process

>NIC 1

Pipe 2 Thread3 Queue 2

Thread 4

NIC 2

> Pull

o

Pipe L Thread1 Queue 1
NIC 1 — Pull —»

»Parse, Lookup, and Process

»NIC 2

Pipe Nthread Nx2-1 Queue N

Thread Nx2

NIC N

e PU”

o

»Parse, Lookup, and Process

>NIC N

Deployable Packet Processing Container

¥

Dutput

Ny




Optimized Data Store Client Interface

e.g., Batching, Buffer Alloc To remote data store

NIC

Data Store Client Interface
Buffer Pool Request Batching

T

Pipe L Thread1 Queue 1 Thread 2
NIC1 — Pull — ~Parse, Lookup, and Process —NIC 1 ~_

¥

Input Pipe 2 Thread3 Queue 2 v Thread 4 Output
— NIC 2 — Pull —» >Parse, Lookup, and Process —+NIC 2 —

. E E

X Pipe NThread Nx2-1 Queue N il Thread Nx2 / @

Ny

NIC N-— Pull — ~Parse, Lookup, and Process —»NIC N




Orchestration

* Failure handling — speculative failure detection (much faster reactivity)
* Scaling in and out — no need to worry about state when balancing traffic

/7] / .
4
| 4
| 4
Network Y
Function Monitor/
Manage Controller
Network Function Host __----7, y
| INCULVVUI N 1 unwun 11vo r

Traffic to network functions @



Implementation

Network Functions (NAT, Firewall, Load balancer)
* DPDK

e SR-IOV

* Docker

* Infiniband to Data store (DPDK since paper)

Data store
 RAMCloud (Redis since paper)
* Extending with timer

Controller
* Extended FloodLight, basic policies for handling scaling and failure.

Gy



StatelessNF System Evaluation

e T



Evaluation

Goal: in this extreme case architecture, can we get
similar throughput and latency as other software
solutions,

but with better handling of resilience and failure?

Gy



Experiment Setup

Tests: o -

* Raw throughput, latency

* Handling failure Network

Function

* Handling scaling in-out

Network Function Host
etwork Function Hos Traffic

sink

Traffic
generation

Network Functions:

* Baseline Network Functions (state and
processing are coupled)

Network
Function

 Stateless Network Functions (state and _
processing are decoupled) ! EietworkFunction Host] | @’




Throughput

10 - Baseline FW | 10 ‘
Stateless FW —i—
0 Baseline LB 8
g8 Stateless LB —— | —~
2 Baseline NAT 56
56 Stateless NAT —&— =
Q : : : : >
S T4
L. | (@]
3" s
e
=, i 2
0 | 0

Og ‘Z?é) 256\ S-Z o) ‘209 4‘250 0
Packet size (bytes)

Raw packets per second — lower
until about 256 byte packets

Note: similar to systems which have added support for scaling or failure

1 2 3 4 5 6 7 8 9
Transmission rate(Gbps)

Enterprise Trace — Stateless
Roughly matches Baseline



Latency

1 | | e e

300us

100us

[ lBaseIine NAT
; ! Stateless NAT = =
== == | == - I

500 1000 1500 2000 2500
Round Trip Time (usec)

NAT (Firewall and Load balancer has slight less latencies) @’

CDF of Packets
o o o
AN (@)) (00]

O
N
|




Scaling In and Out

Baseline FW
Stateless FW = = -

Cco

o

Goodput (Gbps)

N
-~

-

Time (sec)



Handling Failure

Baseline FW
Baseline FW - failover |

Stateless FW - @ -
Stateless FW - failover = % =

1
-
o
|
|

LN
o
o

Time to complete (sec)
N w
) -
o o

[
-
o

.

|
| |
) )
|

100 200 300 400 500
Number of download requests @’



Discussion and Future Work




Discussion

* Date store scalability

e Replace RAMCloud with other systems that report better
throughput and lower latency (e.g., FARM, Algo-Logic)

* Reducing interactions with a remote data store

* Integrate a set membership structure (e.g., a bloom filter) to
reduce the penalty of read misses

* Explore placement of data store instances (e.g., co-locating with
network function instances)

Gy



Conclusions and Future Work

* Networks need agile network functions
» Seamless scalability, failure resiliency, without sacrificing performance

 StatelessNF is a design from the ground up
e Zero loss scaling, zero loss fail-over

* Main potential drawback... performance, but in this extreme point:
* Throughput similar to other solutions
e 100-300us added latency (similar to other solutions)

* Future work: Evolve data store design for network functions

Gy



Thanks!



